lpars_rlpars_to_B#

anri.crystal.lpars_rlpars_to_B(lpars, rlpars)[source]#

Get the Busing-Levy B matrix from the direct and reciprocal lattice parameters.

Parameters:
  • lpars (Array) – [6] Lattice parameters (a,b,c,alpha,beta,gamma) with angles in degrees

  • rlpars (Array) – [6] Reciprocal lattice parameters (a*,b*,c*,alpha*,beta*,gamma*) with angles in degrees

Returns:

B (jax.Array) – [3,3] Reciprocal space orthogonalization matrix

Notes

For a direct space lattice:

\[\left( a, b, c, \alpha, \beta, \gamma \right)\]
and a reciprocal space lattice:
\[\left( a^*, b^*, c^*, \alpha^*, \beta^*, \gamma^* \right)\]
We can say (Busing & Levy 1966, Equation 3) [2]:
\[\begin{split}B = \begin{bmatrix} a^* & b^* \cos{\gamma^*} & c^* \cos{\beta^*} \\ 0 & b^* \sin{\gamma^*} & -c^* \sin{\beta^*}\cos{\alpha} \\ 0 & 0 & \frac{1}{c} \end{bmatrix} \end{split}\]

References